Asymptotic Quasi-likelihood Based on Kernel Smoothing for Nonlinear and Non-Gaussian State-Space Models

نویسندگان

  • Raed Alzghool
  • Yan-Xia Lin
چکیده

This paper considers parameter estimation for nonlinear and non-Gaussian state-space models with correlation. We propose an asymptotic quasilikelihood (AQL) approach which utilises a nonparametric kernel estimator of the conditional variance covariances matrix Σt to replace the true Σt in the standard quasi-likelihood. The kernel estimation avoids the risk of potential miss-specification of Σt and thus make the parameter estimator more robust. This has been further verified by empirical studies carried out in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo State-Space Likelihoods by Weighted Posterior Kernel Density Estimation

Maximum likelihood estimation and likelihood ratio tests for nonlinear, non-Gaussian state-space models require numerical integration for likelihood calculations. Several methods, including Monte Carlo (MC) expectation maximization, MC likelihood ratios, direct MC integration, and particle Ž lter likelihoods, are inefŽ cient for the motivating problem of stage-structured population dynamics mod...

متن کامل

Utilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework

Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...

متن کامل

Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions

Generalized linear models (Wedderburn and NeIder 1972, McCullagh and NeIder 1988) were introduced as a means of extending the techniques of ordinary parametric regression to several commonly-used regression models arising from non-normal likelihoods. Typically these models have a variance that depends on the mean function. However, in many cases the likelihood is unknown, but the relationship b...

متن کامل

Estimation and Variable Selection for Generalized Additive Partial Linear Models By

We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus ...

متن کامل

A Class of Non-Gaussian State Space Models with Exact Likelihood Inference

The likelihood function of a general non-linear, non-Gaussian state space model is a highdimensional integral with no closed-form solution. In this paper, I show how to calculate the likelihood function exactly for a large class of non-Gaussian state space models that includes stochastic intensity, stochastic volatility, and stochastic duration models among others. The state variables in this c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007